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Abstract. Aiming at the problem of slow convergence and poor effect of GA in solving large-scale 

sequence optimization problems, a deep evolutionary algorithm is proposed in this work. The algorithm uses 

the trained network to quickly find the initial solution of the problem and injects the initial solution into the 

GA population for further optimization. Finally, the optimal solution in the final population will be further 

optimized by the 2-OPT. The proposed algorithm is compared with other algorithms on the tsplib95 instances 

and industrial sorting sequence optimization dataset. Experimental results show that the proposed algorithm 

achieves the best optimization performance compared with other algorithms, especially for large-scale 

sequence optimization problems.  
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1. Introduction 

The Travelling Salesman Problem (TSP) is a typical combinatorial optimization problem and seeking 

efficient solutions is a key task. TSP and its approximation problems are widely distributed in industrial 

optimization and scheduling, which has broad application scenarios [1]. At present, the method of solving 

the TSP problem is mainly divided into approximate method and exact method. As the scale of problem-

solving increases, the time cost of the exact method increases exponentially, which cannot meet the real-time 

requirements. While the approximate method achieved a certain balance between the solution‟s accuracy and 

speed, but no theoretical guarantee can be given on solution‟s accuracy [2]. 

Meta-heuristic is the mainstream method in approximate method, such as Simulated Annealing (SA) [3], 

Particle Swarm Optimization (PSO) [4], Genetic Algorithm (GA) [5], Ant Colony Optimization (ACO) [6]. 

Note that there is still room for Meta-heuristic to be improved. Combining Meta-heuristic with other 

methods is a feasible research direction. For example, Zhu et al. [7] combined GA and reinforcement 

learning (RL) to optimize the FPGA circuit structure.  

Since 2015, deep learning has brought new ideas to combinatorial optimization problem [8]. Compared 

with the online search of traditional meta-heuristic, the trained neural network only performs forward 

calculation once, so its time cost is smaller. For example, Dai et al [9] used a graph attention mechanism to 

represent city nodes and DQN for decision-making, achieving the best optimization performance below 50 

nodes. However, when the scale of node further increases, the optimization performance of the above 

network will degenerate. Kool et al [10] performed RL on the improved Transformer network, and combined 

the 2-OPT algorithm for local optimization. The best optimization performance is achieved below 100 nodes. 

To efficiently and reliably solve large-scale TSP and its approximation problems, this work proposes a 

deep evolutionary algorithm, which combines deep reinforcement learning and evolutionary algorithms to 

solve the better path, and combines the 2-OPT to further optimize the path. The proposed algorithm is 

compared with other algorithms on 6 tsplib95 instances of different scales. Meanwhile, the deep evolutionary 

algorithm is applied to the optimization of the sorting sequence of large-scale real industrial parts with 

constraints, and the problem is carried out on different scales. The experimental results show that the 

proposed algorithm gives the best optimization improvement compared to other algorithms. 

2. Problem Description 
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2.1. Traveling Salesman Problem 

As a classic NP-Hard problem, TSP can be described as a businessman who has to traverse a series of 

cities. Each city can only be visited once. After traversing all the cities, he will return to the first city. The 

goal of optimization requires the shortest total path. The problem can be expressed as an undirected complete 

graph G=(V, E), where V represents a collection of N city nodes and N∈N
+
, E represents a collection of 

connecting edges between city nodes. The connecting edge eij ∈ E of city i and j (positive integer i, j ∈ V 

and i is not equal to j), the distance of eij is dij. The decision variables for this problem are: 

                   {
                                  

                 
                                    (1) 

The optimization goal for this problem is: 

     ∑ ∑       
 
 

 
                                                          (2) 

2.2. Constrained Large-Scale Sorting Sequence Optimization 

Constrained large-scale sorting sequence optimization can be approximated as an unclosed large-scale 

TSP problem. A typical example is the optimization of the sorting sequence of parts on a mechanical 

engineering manufacturing production line. Assuming that several cut steel plates need to be sorted, each 

plate contains several cut parts and the parts need to be placed in the material frame by a robotic arm. Due to 

the requirements of the industrial standardization process, the frame has set palletizing rules (the frame is 

divided into T areas, and each area is stacked with the same parts which are no more than L). Once the 

palletizing rules are not met, the frame clearing process is required, and frequent frame clearing requires 

repeated scheduling of AGV transportation. Generally, when planning a smart factory, it is necessary to 

minimize ineffective material handling. Therefore, it is possible to reduce the number of frame clearing by 

optimizing the sorting sequence of steel plates and parts in the plates. The meaning of the symbols related to 

this problem is defined in Table I. 

The optimization objective and constraints are shown in Equation (3), which is to minimize f(S, P), 

where two constraints correspond to the palletizing rule (T=4, L=10 in this work). 

       {
                         

 (        )                
 

      {
   
    

                                                                                 (3) 

                                                                            

Fig. 1.  The structure of the deep evolutionary algorithm. 
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TABLE I. The Definition of Related Symbols 

Symbol Definition 

S 

The data of N ∈ N+ steel plates with sorting sequence which is recorded as 

[... → Pi−1 → Pi →... → Pj−1 → Pj →...]. P represents the data of steel 

plate, where the positive integer subscripts i, j ∈ [1, N], and i != j. 

P 

The data of M ∈ N+ parts with sorting sequence which is denoted as [... → 

ki−1 → ki →... → kj−1 → kj →...]. where k stands for parts, where a 

positive integer subscript i, j ∈ [1, M], and i!=j. P represents the data of 

steel plate, where i, j <= N and i != j. 

Vθ 
The number of stacking layers of parts in any area of the current material 

frame, Vθ ∈ N. 

θ The number of types of all parts in the current material frame, θ ∈ N. 

f 

The objective function. The input is S and P, the steel plate set of a given 

sorting sequence is sorted according to the palletizing rule, and the output is 

the total number of frame clearing. Its mathematical definition is shown in 

Equation (1), which is a recursive form. The value of f(S, P) is 0 during 

initialization, and f(S, P) is incremented by 1 each time the frame clearing is 

triggered. 

 

3. The structure of the deep evolutionary algorithm 

The deep evolutionary algorithm gives the initial solution through the trained deep network and uses the 

initial solution as one of the evolutionary algorithm individuals, which makes the subsequent evolutionary 

algorithm has a higher quality solution in the initial stage. Meanwhile, the evolutionary algorithm Combining 

the elite retention strategy to enhance the diversity and reliability of the population and avoid falling into the 

local optimum. The following introduces the basic framework of the deep evolutionary algorithm. 

3.1. The Framework of Deep Evolutionary Algorithm 

The evolutionary algorithm is a calculation method that replaces the problem parameter space with the 

coding space. It needs to establish a one-to-one mapping between the actual representation of the target 

problem and the coding bit string. The path notation is used in the coding of the above problems. For 

example, the path [1→...→i→...→j→...→N→1] in the TSP problem represents starting from the first city, 

traversing each city in turn, and then returning to the original city. The coding of constrained sorting 

sequence optimization is shown in S and P in Table I. 

Selection operator: The roulette operation is used. the reciprocal of an individual‟s fitness value is taken 

as the probability of being selected, and individuals with a lower fitness value are selected as the 

evolutionary father and mother. 

Crossover operator: Firstly, two different subscripts start and end are chosen and the sequence segment 

of the father[start:end] is retained to the next generation. Then all the father[start:end] genes contained in the 

mother are deleted, and the father[start:end] sequence segment is inserted at the mother‟s start position to 

form a new offspring. 

Mutation operator: The single-point cross mutation is used. If the mutation operator is executed, two 

different positions in the individual are randomly selected for exchange. The elite retention strategy is used 

in the evolution of the population. In other word, the parent population and the offspring population are 

merged and sorted according to the individual‟s fitness value. The first d ∈ N+ individuals are selected as 

the next evolutionary population, which is conducive to maintaining excellent individuals. After randomly 

initializing the population individuals, the selection, crossover, and mutation operators are performed in 

sequence to generate new individuals, so as to find individuals with lower fitness values. 
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From the above description, it can be found that since the initial solution of the evolutionary algorithm is 

randomly generated, the quality is not high and it is very likely to fall into a local optimum. To solve this 

problem, as shown in the algorithm framework in Figure 1, the attention network is used to inject high-

quality initial solutions into the evolutionary algorithm. 

Fig. 2. The structure of the encoder.                                    Fig. 3. The calculation of attention mechanism. 

3.2. Initial Solution Generation Based on Attention Network 

The attention network is divided into two parts: 1)Encoder-decoder. Which is mainly responsible for 

establishing the relationship between problem input and output. 2)Attention mechanism. Which integrates 

the relevant input and output in the encoder-decoder and calculates the degrees of attention of the node to be 

visited at the current moment. The calculation is repeated until all the moments are executed. The specific 

structure of the model is divided into three parts: 

1) Encoder. The encoder uses a single-layer attention structure, and the input is the original data. For the 

TSP problem, it is the original city coordinate data. For the constrained sorting sequence optimization, the 

bag-of-words model is referenced to abstract a single steel plate as a fixed dimension vector about the part 

(the vector‟s dimensions is the total types of the part. When traversing the parts in the steel plate, the 

subscript position of the corresponding part in the vector is added 1) which will be the input. As shown in 

Figure 2, the input is passed through a shared fully connected layer to obtain the embedding representation. 

Then the multi-head attention mechanism is used to obtain the updated embedding representation injected 

with other node information. Finally, the final output representation of the original node in the encoder is 

obtained by a forward layer, and the output representation is summed and averaged as the overall 

representation of the problem. This overall representation will form part of the query vector in the attention 

mechanism of the decoder. 

2) Attention mechanism. As shown in Figure 3, assuming that there are embedding representations h1, 

h2, h3, and h4, the query vector qi, key vector ki, and value vector vi of each embedding representation hi will 

be calculated. Please see equation (4), where W
Q
, W

K
, and W

V
 are all learnable parameter matrices. Among 

them, the attention score uij of node j to node i is qi points multiplied by kj. If node j is unreachable to node i, 

the attention score is negative infinity. After normalizing uij and multiplying it by vj , it is the black bar in 

Figure 3. Adding the four vectors is the output of the attention mechanism to hi , see Eequations (5)-(7). 

                                                                        (4) 

    {
  
                        

              
                                                   (5) 

           (   )  
 
   

∑  
    

  
                                                  (6) 

  
  ∑                                                                    (7) 

3)Decoder. The decoder mainly combines the overall representation output by the encoder and the 

information of the current solution, and outputs the evaluation of the node that may be selected at the next 

moment in a targeted manner. As shown in Figure 4, the attention mechanism is still used in the decoder for 

decoding. The overall representation, the first node‟s encoding representation of the current solution, and the 
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encoding representation of the selected node at the previous moment are aggregated (where v1 and vf are 

learnable logo vectors). The aggregated vector is used as the query vector to decode the node representation 

output by the encoder. In addition, the masking mechanism is used to shield the city or steel plate that has 

been visited, so that it will not be selected in the final decision. 

3.3. Continued Optimization of 2-OPT Algorithm 

The 2-OPT algorithm is an efficient local path improvement algorithm. Its main idea is to optimize the 

current solution by continuously exchanging two edges for a given initialization path, and the solution with 

the lowest fitness value is used as the final output. This work uses the 2-OPT algorithm to further optimize 

the solution given by the deep evolutionary algorithm. 

Fig. 4. The structure of the decoder. 

4. Network Training 

The TSP or the sequence optimization process contains the markov property. The node to be visited at 

t+1 is only related to the node selected at t and the information of overall node. Note that the parameter of 

the attention network is w, and the set of input nodes as V, Xout is the complete solution (node set with 

sequence), and xt is the selected node at time t. The city to be visited (determined by the attention network 

and the current state) is gradually added to the current solution through chain rules until all nodes are 

traversed, as shown in equation (8): 

 (    |   )  ∏  (    |    ) 
    (    )                                   (8) 

To train the attention network, the Actor-Critic framework is used in training. 

5. Experiments and Results 

5.1. Experimental Design 

1) Dataset. For the TSP, this work uses the tsplib95 instances with different scales. For the sorting 

sequence optimization, this work collects the production data of a certain period on the production line of a 

machinery manufacturing company, with a total of 350 real steel plates data. The TSP problem and the 

sequential optimization are used to verify the effectiveness of the deep evolutionary algorithm. 
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2) Experiment environment. The experiment environment is: CPU processor is Intel(R) Xeon(R) Gold 

5218 CPU@2.30GHz, 64G memory under Ubuntu operating system. The programming language is 

Python3.8 and the deep learning framework is Pytorch1.7.0 without GPU. 

3) Comparison algorithms. To verify the performance of the deep evolutionary algorithm, a series of 

comparison algorithms are used, including GA, PSO, SA, ACO, Pointer Network, Transformer, and the deep 

evolutionary algorithm without 2-OPT. 

4) Parameter settings. The relevant parameters of the Transformer network in the Actor-Critic training 

are set as follows: the embedding layer dimension of the encoder is 128, and the dimensions of the query 

vector, key vector, and value vector are all 128, Head=8, Layer=1, Inner=512. The population size of GA is 

260, the mutation probability is 0.1, and the maximum number of iterations is 200. The initial temperature of 

SA is 20, the minimum temperature is 0.1, the maximum number of iterations is 200, and the number of 

repetitions at the same temperature is 5. The number of particles of PSO is 260, and the maximum number of 

iterations is 200. The maximum number of ACO iterations is 200, the maximum number of ants is 260, ρ

=0.9, α=1, β=1. Pointer Network has one Layer, and the dimensions of the embedded layer and hidden 

layer are both 128. The maximum number of iterations of 2-OPT is 500. 

The optimizer in training is Adam and the initial learning rate is 1e-4, while the batch size is 512. The 

training scale of TSP and sorting sequence optimization are both 10. In the TSP, the training data is 

uniformly randomly selected 10 coordinate data between 0 and 1 (10 steel plates are randomly selected for 

the sorting sequence optimization), and 2048 evaluation scenarios are generated. 

5.2. Comparison with Other Algorithms 

Table II shows the performance of different methods on TSP instances, where the time cost is in seconds 

and the node scale of test data ranges from tens to thousands. It can be seen that GA has achieved the four 

best performances on six test instances in the traditional meta-heuristics. While the deep network algorithm 

has a great advantage in time cost. Therefore, this work combines GA and deep network. Compared with 

other algorithms, our algorithm achieves the best performance. Moreover, further optimization by the 2-OPT 

algorithm ensures that the deep evolutionary algorithm can achieve better performance. But it also further 

increases in time cost, which is at the cost of increased time complexity. 

TABLE II. THE PERFORMANCE OF DIFFERENT ALGORITHMS ON TSPLIB95 EXAMPLES. 

case 
GA SA PSO ACO 

Avg time Avg time Avg time Avg time 

berlin52 7607 7 7807 3 7900 20 7664 46 

kroA150 28518 35 28753 5 31159 49 29708 397 

a280 3011 53 3027 9 3088 111 2815 1359 

fl417 13176 220 13511 14 13360 472 16569 2611 

nrw1379 68763 611 68862 62 68743 1224 153010 30701 

pr2392 457527 3299 459985 148 458674 3481 - - 

a. Among them, the matrix that ACO needs to maintain in the pr2392 case is too large, and the current test platform cannot calculate it, so the 

results are no longer listed. 

case 
PN TRANS TRANS+GA OURS 

Avg time Avg time Avg time Avg time 

berlin52 7984 0.03 7634 0.01 7591 7 7542 15 

kroA150 31008 0.24 28761 0.15 27358 35 26949 47 

a280 3214 0.39 2798 0.3 2763 53 2643 63 

fl417 13251 0.76 13219 0.6 12016 220 12008 232 

nrw1379 179517 2.2 93825 1.7 65274 611 60278 637 

pr2392 1129395 3.6 909312 3 429366 
329

9 
41362

8 
3318 
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TABLE III. THE PERFORMANCE ON VALIDATION SETS OF DIFFERENT SCALE SORTING SEQUENCE OPTIMIZATION. 

scale 
N=10 N=70 N=140 

Avg.f time Avg.f time Avg.f time 

RANDOM 32.22 - 223.38 - 443.75 - 

FIXED 23.20 - 159.51 - 317.89 - 

Transformer 22.85 0.01 157.61 0.02 314.88 0.14 

GA 21.53 0.54 156.36 0.84 315.23 1.9 

OUR-2-opt 21.53 0.54 156.21 0.84 314.15 1.9 

OUR-TRANS 20.26 4.14 155.84 16.83 315.20 22.21 

OURS 20.26 4.14 155.57 16.83 313.76 22.21 

a. „-‟ means that the time cost is too short. 

b. „OUR-TRANS‟ means Transformer network is removed in our algorithm. 

To further verify the effect of our algorithm on large-scale data, Table III presents the performance of 

our algorithm on the validation set of constrained large-scale sorting sequence optimization. RANDOM is 

the current method in the production line, which means a random sorting sequence of steel plates and a 

random sorting sequence of parts in the plate. FIXED represents the random sorting sequence of steel plates, 

but the sorting sequence of the parts in the plate is in the order of fixed dictionary id. Transformer, GA, 

Transformer+GA are all optimizations to the sorting sequence of steel plates, and the sorting sequence of 

parts in the plate is in the order of fixed dictionary id. GA+2-OPT means that GA optimizes the sorting 

sequence of steel plates, and 2-OPT optimizes the sorting sequence of parts in the plate. Our algorithm uses 

Transformer+GA to optimize the sorting sequence of steel plates, and 2-OPT optimizes the sorting sequence 

of parts in the plate. It can be observed from the Table III that the our method still achieved the least average 

number of frame clearing on different steel plate scales (10, 70, 140), which is the largest optimization range 

compared to the RANDOM method. 

5.3. Network Effectiveness Analysis 
Figure 5(a) shows the training curve of the attention network on the TSP training sample. Figure 5(b) 

shows the training curve of the attention network on the optimization of the sorting sequence. It can be learnt 

from Figure 5 that the attention network used in this work can achieve convergence in both of the above 

problems.  

 

(a) TSP, the task scale is 10.  (b) The sorting sequence optimization, and the task scale is 10. 

Fig. 5. The training process of the transformer. 

 

(a) GA alone.  (b) GA+Transformer. 

Fig. 6. The performance of algorithm in sorting sequence optimization. 
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5.4. Case Study 

This section studies the optimization example of steel plate sorting sequence and parts sorting sequence. 

Figure 6(a) shows the optimization example (N=70) of the single GA algorithm in the steel plate sorting 

sequence while the parts sorting sequence is fixed. In the 51st generation, f dropped from 173 times to 172 

times, and didn’t change after that. Figure 6(b) shows the optimization example of the GA+Transformer 

algorithm in the steel plate sorting sequence while the parts sorting sequence is fixed. It can be seen that f 

reaches 172 times around the 5th generation. On this basis, the subsequent f drops to 171 times. The 2-OPT 

algorithm was used to further optimize the parts sorting sequence while the steel plate sorting sequence was 

fixed at this time, and the f dropped to 169 times, which is further optimized compared to the previous one. 

It can be learnt from the above experiments that each module in our algorithm plays an important role 

and is closely integrated with each other, which has a good solution performance, especially for large-scale 

sequential optimization. 

6. Conclusion 

This work proposes a deep evolutionary path optimization algorithm. The algorithm uses the trained 

attention network to generate the initial solution, and injects the solution into the GA population to speed up 

the search, and then uses 2-OPT to further optimize the optimal solution in the population. The results show 

that the deep evolutionary algorithm has excellent performance on both problems, especially when the 

problem scale is large. 
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